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Approximate Solution of Boundary Value Problems 
on Infinite Intervals by Collocation Methods* 

By Christian Schmeiser 

Abstract. The numerical solution of boundary value problems for ordinary differential 
equations on infinite intervals is considered. The infinite interval is cut at a finite, large 
enough point and additional boundary conditions are posed there. For the solution of the 
resulting problem, A-stable symmetric collocation methods are employed. Using the behavior 
of the solution of the "infinite" problem, meshes are defined which avoid an unreasonably 
high number of meshpoints. Stability and convergence of the resulting schemes are shown: 

1. Introduction. In this paper we analyze numerical methods for the solution of 
problems of the form 

(1.la) y' = f(t,y), 0 < t < 00, 

(1.lb) b(y(O)) = O, 

(1.lc) y e C[O, oo] {y E C[O, oo), lim y(t) exists and is finite}, 

where f, y E RI and b E Rk with k < n. The Jacobian fy(oo, y(oo)) has no purely 
imaginary eigenvalues and there is a complete set of eigenvectors corresponding to 
the zero eigenvalue. Problems of this form occur, for example, in fluid dynamics and 
electronics. A vast number of applications result from an asymptotic analysis of 
singular perturbation problems where (1.1) defines boundary layer solutions. 

The numerical solution proceeds in two steps. First, we apply the theory of 
Markowich [7] and replace (1.1) by the approximating "finite" problem 

(1.2a) XT = 0t T < t < T. 

(1.2b) b(XT(0)) = 0, 

(1.2c) S(T)xT(T) = a(T). 

Thus, we consider the differential equation only on the finite interval [0, T] and 
replace (1.lc) by the so-called asymptotic boundary condition (1.2c), which can be 
chosen such that 

lim ||Y 
- XT 11[0,T] 

= 0. 
T00o 
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The second step is the numerical solution of (1.2). The methods we consider are 
A-stable, symmetric collocation methods. The most powerful among these are 
collocation at Gaussian and Lobatto points, because of their superconvergence 
properties. The simplest members of these families are the Box-scheme and the 
trapezoidal rule, respectively. We do not include one-sided methods (e.g., the 
implicit Euler scheme) in our discussion. As we admit unstable solution components, 
instabilities might occur if the meshsizes are not kept small. 

The condition of small meshsizes for stability does not apply for the symmetric 
schemes, which is of great importance, because it would lead to an unreasonably 
high number of meshpoints for large values of T. We will show that for a given 
accuracy an exponentially increasing meshsize sequence can be used if y(t) -* y(oo) 
exponentially. Assumptions on the problem which guarantee the validity of this 
condition will be stated. 

This paper extends the results of Markowich and Ringhofer [8], who consider 
problems with a singularity of the second kind at t = 0o. Their treatment does not 
include the case of a zero eigenvalue of fy(oo, y(oo)), and the methods they analyze 
satisfy the condition that meshpoints and collocation points do not coincide, which 
is not the case for Lobatto-points. 

The idea of exponentially increasing meshsizes was originated in the analysis of 
numerical methods for linear singular perturbation problems (see Ascher and Weiss 
[1]). The results of Markowich and Ringhofer [8] simplify the analysis for certain 
nonlinear singular perturbation problems (see Ascher and Weiss [2]). Hopefully, it 
will be one application of our theory to provide a tool for the extension of these 
results. An outline of the paper follows. In Section 2 we state some analytic results 
for boundary value problems on "long" and infinite intervals (see Markowich [7]). 
The numerical methods to be used are defined in Section 3, and their stability for 
linear problems is shown in Section 4. In Section 5 we state and prove the 
convergence results for nonlinear problems. 

2. Analytic Preliminaries. In this section we give an outline of the first step of the 
approximate solution of (1.1), i.e., we replace (1.1) by a problem on a finite interval. 
The results can also be found in Markowich [7] in much greater detail. We require 
problem (1.1) to have a locally unique, exponentially decaying solution. This is 
guaranteed by the following assumptions: 

(Al) 11f(t, y(oo))jI = O(e-Kt) for some K > 0. 

(A2) For the Jacobian fy(oo, y(oo)) the relation 

E1 f(oo, y(oo))E = A = A ) 

holds for some matrix E, where the eigenvalues of the nX n- matrix A- have 
negative real parts and the eigenvalues of the n + X n + matrix A + have positive real 
parts; n = n_+ n++ n0. 

(A3) Let (1.1) have a solution y*(t) and the linearization 

W' =fY(t9y*)W, bY(y*(O))w = 0, wE C[Ooo] 
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have only the trivial solution. This condition implies b E RI- no, by the theory of 
Markowich for linear problems. 

An approximating finite problem for (1.1) of the form (1.2) is completely defined 
by the matrix S(T) and a(T). We denote a row decomposition of E-1 correspond- 
ing to the blocks of A by 

E-1 =E+1. 
EE1= 

Choose S(T) = Ei1 and a(T) = S(T)y*(oo). Then the following convergence 
result holds. 

THEOREM 2.1. Let conditions (A1)-(A3) hold. Let S(T) and a(T) be defined as 
above and X min be defined by 

Xmi. = min K, }-v > O, 

where v is a positive constant, K is taken from condition (A.1) and 

X = min -Re X, X is an eigenvalue of A . 

Then the problem (1.2) has a locally unique solution XT which satisfies 

(2.1) I|y* - XTIIL-[OT] = 0(exp(-XminT)). 

In order to keep the error at 0(E) we choose 

(2.2) T(E)= 1 ln-. 

3. Symmetric Collocation Methods. We consider collocation methods using con- 
tinuous piecewise polynomials. Given a boundary value problem 

y' = f (t, A) a < t < b, 

b(y(a), y(b)) = 0, 

we define a mesh 

a -< to0 < t 1 < ... < tN = b hij= tj+-tj9 i=0 O. . . .,N- 1. 

A k-stage collocation method is then completely defined by a set of points 
0 < u1 < u2 < ... < uk < 1 by requiring the approximate solution Yh to be in 

C[a, b] n(Hk[to, t1] X ... XIk[tN-1 tN]) 

to satisfy the boundary conditions, and to satisfy the differential equation at the 
collocation points tij = ti + ujhi; i= 0... ,N - 1; j = 1,..., k (see de Boor and 
Swartz [4], Weiss [9]). Here HIk[a, /] denotes the space of polynomials of degree at 
most k on the interval [a,,B]. 

We consider the case where the points uj, j = 1,..., k, are placed symmetrically 
about 2. Thus, the methods of interest fall into two classes: 

I. u1 > 0, uk < 1. In particular, the Gauss schemes belong to this class. 
II. u1 = 0, uk = 1. The Lobatto schemes are the most accurate members of this 

class. 
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The growth functions of these methods satisfy (see Wright [10]) 
(3.1a) y(z) I< 1 forRez < 09 

(3.1b) y(-z) = (Y(z))-, 

(3.1c) ez - y(Z) = O(zp), 

where p = 2k for Gauss schemes and p = 2k - 2 for Lobatto schemes. The 
relation (3.1a) implies A-stability. It is a well-known fact that the collocation 
schemes are equivalent to certain implicit Runge-Kutta methods (see Axelsson [3], 
Weiss [9]), and can be written as systems of difference equations 

(3.a) j - Yi k 
(3.2a) ' = E ajl=f(ti ,yil), i0=0 . . ., N - 1, j = 1, ..., k, hi 1=1 

(3.2b) h - = bf (ti ,y), i= 0. . . ,N- 1, 

(3.2c) b(yo, YN) = 0, 

where ail= fo'j L(s) ds, b, = fo L,(s) ds, the L, being the Lagrange polynomials 
for the uj, j = 1, ... ., k. For a method of class II, Yi = Yil = Yi-1,k holds, which 
implies that in the above system (3.2b) can be omitted. We set 

A = (ayj), j = 1(1)k, 1 = 1(1)k, b = (b1, .., bk)T. 

Then Lemma 3.1 in Ascher and Weiss [1] implies that A is invertible for methods of 
class I, and 

( 0) 

for methods of class II, where the (k - 1) x (k - 1)-matrix A is nonsingular. In 
order to state more properties of symmetric schemes, we introduce the operator S 
acting on the space of matrices and being defined by 

S(X) = 
(Xm-i+1,n-j+i)i=,...,m;j=j,...,, for X = (xij),=...,M;j=1,...,n 

By elementary calculations we obtain 
(3.3a) S(I) = I, S(aX + flY) = aS(X) + 1S(Y), 

(3.3b) S(XY) = S(X)S(Y), S(X-1) = [S(X)] -1, S-1 = S. 
We can now show 

LEMMA 3.1. (a) A + S(A) = lkbT with 1k = (1, ..., 1)T, (b) S(bT) = bT hold for 
symmetric collocation schemes. 

Proof. For symmetric schemes ui + Uk-i+1 = 1; i = 1,.. ., k, holds. This implies 
for the Lagrange polynomials 

(3.4) Li(u) = Lk-?l(- ). 
Using (3.4) we can show (a) by 

aij + ak-i+1,k-j+1 jL(u) du + 1 Lk-j+1() d 

= { j(u)du+j L(1 - u)dufLj(u)du=bjg i j= 1, ...,..k. 
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Equation (3.4) immediately implies bi = bk-?l, i = 1,..., k, which proves (b) and 
thus completes the proof. C 

4. Stability for Linear Problems. 
(a) The Scalar Case. We start our treatment with the simple case of a scalar 

equation 

(4.1a) y' = xy + f (t), 0 < t < T. 

(4.1b) Y(O) = 

where X E C, with ReX < 0, and f E C[O, T]. A collocation scheme for (4.1) has 
the form 
(4.2a) 9 = 1kYi + XhiA5i + hif, = N 1 

(4.2b) y1+1 = yi + XhjbTSi + hibTli, N 1, 

(4.2c) Yo=Ye 
where 5i = (Yi,.-, Yik)T and A = (f(ti1),..., f(tl,))T7. From (4.2a), 5i can be 
determined as 

(4.3) = (Ik - XhiA) lky +(Ik - XhiA)lhi~Afi, 
which yields 

(4.4) Yi+1 = y(Xhi)yi + hir(Xhi)Af, Yo = ye 

where 

(4.5a) y(z) = 1 + zb T(Ik - ZA) lk, 

(4.5b) r(z) = bT(Ik - zA) , 
for methods of class I, and 

(4.6a) y(z) = (Ik-1 - zA 1(1k-1 + Zi) k-19 

(4.6b) ~~r(Z) = [(Ik-1 9i) ax ) 

for methods of class II, where we used the last line in (4.3) and the form of 
(Ik - zA)-1 stated in the proof of Lemma 4.1 below. For a representation of the 
solution of the homogeneous equation in (4.4), and a particular solution, we 
introduce the operators 

m-1 

(4.7a) Ynkm(Xg h) = H y(Xh1), 
i=n 

m-i 

(4.7b) HnTm(X h)f= E hjYj+im(X h)r(Xhj)/, 
j=n 

where h contains the information about the mesh and fT = (got ... , ff 4 Using 
these definitions, the solution of (4.4) reads 

(4.8) yi = Yi(X , h)Y + H,(X, h)f, i=1,2,.. ., N. 
In order to estimate the particular solution in (4.8), we need the following 

LEMMA 4.1. For Rez < 0 

(4.9) II(Ik - ZA)-II|o, < const 
holds, where const only depends on A. 
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Proof. A-stability implies that 

(4.10) (Ik-zA)1 exists forRez < 0. 

For methods of class I we write 

(Ik - zA)1 = (-Ik - A) 

We now use the invertibility of A and obtain for IA z1/I < 2, or Izi > 211A111, 
the estimate 

Oc(Ik 
- zA) 111 < 1 

2IIA-111 < 1. 

On the compact set fz E= C IRez < 0, IzI < 2 11A11}, (4.9) obviously holds because 
of (4.10). For methods of class II, we similarly obtain 

( Ik - - z ~ | < const for Rez < 0, 

Z (Ik- 1 - zA) | const for Re z < 0 

and use 

i: 0 -~0 
(Ik 

- zA)- 
( zd I 

I_ - zA ) (I - M-1 a- 1 0- M 
zei 

-k-1~ 
z) 

=~(Ik1-zA (1k-1 
A~j 

which concludes the proof of Lemma 4.1. C 
In order to give a stability estimate for the solution of (4.2) we have to introduce 

norms. For -T = (yo' 5'J, Yi'.. YN-i' iPN- YN)T we choose a discrete LI-norm 
defined by 

I1y_1IILj [t,,tj]:= max max{Iy'I, Iy +l?, 11 9p 11} 
i<P~j-1 

Y 

and for the inhomogeneity f, the following discrete Ll-norm is used: 
j-i 

11 f jjLh[titj]:= Y. hjjj fi 11. 
l=i 

We can now state 

LEMMA 4.2. For the solution 9 of (4.2), 

(4.11) IIYIIL [t0,t11 < const( Y I + ||f IIL[t.,ti1) 

holds. 

Proof. We have 

lYnsm(X, h) |< 1,9 0 < n < m N N. 

by (3.1a), and 

lr(xhj) II< const, 0 < j <N-1, 

by Lemma 4.1. Thus, (4.11) follows from (4.7), (4.8) and (4.3). 0 
The case of a scalar differential equation with exponentially increasing solutions is 

treated similarly. 
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We consider 

(4.12a) Y, = Xy + f(t), 0 < t < T. 

(4.12b) y(T)=y, 
where X E C, with Re X > 0, and f E C[O, TI. Using (3.1b) and (4.4), a collocation 
method for (4.12) can be written as 

(4.13) Y= Y(-Xhi )yi+l - hiS(r(-Xhi))A, YN = 

which follows from (3.3), (4.5) and Lemma 3.1 by virtue of 

y(-z)r(z) = S(y(-z))r(z) = 1 - zbT(Ik + zS(A)) 11k]bT(Ik -zA) 

= bT(Ik+ zS(A)) [Ik + zS(A)- ZlkbIT(Ik- zA) 

= S[bT(Ik + zA)']. 

Formally, we can use the formulas (4.5) instead of (4.6) also for methods of class II, 
which makes the above proof applicable for this case, too. Solving the recursion 
(4.13) yields 

(4.14) Y = X(X, h)y + Hi,N(X, h)f, i=O ,1,.. ., N-1, 
where Yrnm is defined in (4.7a) and 

m-1 
(4.15) H~nm(Xgh)f!= - E hjYi1j(-Xh)S(F(-xhj))If. 

j=n 

Analogously to Lemma 4.2, we obtain the stability result 

(4.16) II YI ILh [titN I< const(O y I + 11"IILhtitNI) t 

Finally, we consider the case X = 0, 

(4.17a) y' =f(t), 0 < t < T. 

(4.17b) y(0)=y- 
where fEe C[0, T. 

Obviously, the solution of a collocation method is 

(4.18) y1 = Y + Hosj(h)f, 

where 
m-1 

(4.19) H?nm(h)f - E hbTfj. 
j=n 

Clearly, the estimate (4.11) also holds for the solution of (4.18). 
(b) Systems With Constant Coefficients. We consider problems of the form 

(4.20a) y' = My + f(t), 

(4.20b) By(0) = fig 

(4.20c) E-+ly(T) = y, 

where y is an n-vector and the n X n-matrix M can be transformed to block 
diagonal form by 

EAE 

E-1ME= A A I A 
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where the n - X n -matrix A - has only eigenvalues with negative real parts and the 
n + X n +-matrix A + has only eigenvalues with positive real parts. A column decom- 
position of E corresponding to the blocks of A is denoted by E = (E_, E+, EO) and 
a row decomposition of E1 by 

E-1 = E(1. 

The matrix B has dimension (n_+ n0) X n and B(E, EO) is nonsingular. These 
assumptions imply unique solvability of (4.20) (see Markowich [7]). We apply a 
collocation method to (4.20). In order to simplify the notation, we use the direct 
product of matrices, which for X = (xij), i = 1,...,p, ] = 1, ... , q, Y = (yij)g 
i = 1, ...,r, j = 1, ..., s is defined as the (pr X qs)-matrix 

X11Y x12Y *-- XlqY 

X? Y= X21Y 

x 1Y ... ... x Y P1 ~~~~pq 

Denoting the components of y by y(l), I = 1,.. ., n, we define Y' = 

(yN(l) yi(2) ... .. yiln), ynl),..., yk))T. The collocation scheme then reads 

Y= (1k ? Ij)y + hi(A ? M)5A + hi(A ? In)L, 

Yi+ = yi + hi(bT 0 M) Yi + hi(bT In 
A 

ByO = , E-1y = y. 

We introduce the transformation 

(4.21) Yij = E Vij | Y; = E ji 

and obtain analogously to Subsection (a), and using the properties of the direct 
product (see Lancaster [6]), 

Ui+1 = y(hjA_)uj + hjF(hjA_)(Ik ? E-11)f, 

v= y(-hiA+)vi+1 - hjS[J(-hjS(A+))](Ik ? E+ ) 
A 

(4.22) w,+ = wi + hi(bT? Eo )Li, 

BE vo =139 VN= Y, 

WOl 

where for an 1 x l-matrix Z 

y(Z) = I, +(bT ? Z)(Ilk -(A 0 Z)) 1(lk ? II) 

1(Z) = (bT? I1)(Ilk -(A ? Z)) 
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holds. Obvious changes in (4.7), (4.15) and (4.19) extend the definitions of Yn me 

H,-m, H,+m and H'm to functions of a matrix P instead of a scalar X. As in 
Markowich and Ringhofer [8], we use the equation 

?(P) = 1J | (X)(XI - P) 1dX, 

which holds for analytic matrix functions A. The contour C encloses all eigenvalues 
of P. Since the eigenvalues of A - and A + are bounded away from zero, this device 
can be used to obtain stability estimates for (4.22), using the results of Subsection 
(a). A particular solution of (4.22) can be written as 

(Hi(Ah)f 

(4.23) Hj'i (A, hf A= Hi+(+ A~ 

'?i(h) f 

and 

(4.24) || I,. ( A, h ) |h[z ]< constl h |L[t,,t'] 

holds. 
Continuous dependence on /P and y is obvious, because of the structure of the 

boundary conditions in (4.22) and the assumption that BE_ is nonsingular. Thus, 
we have 

(4.25) IIYIIL-[totN] < const(1||A | + ||h| + ||fIILh[to'tN]). 

(c) Linear Systems. A problem of the form 

y= M(t)y + f(t), with M(t) = M + G(t), E-1ME = A, 

(4.26) jjG(t) 11 < const t'-'-, 
By(0) = /3, E+y(T) =Y 

is considered, where B satisfies the assumptions (see Markowich [7]) guaranteeing 
unique solvability of (4.26). Applying a collocation method yields 

9i = (1k ? Ij)y1 + hi(A 0 M)Yi + hi(A X In)(Gi5i + fi), 

(4.27) yi+1 = y, + hi(bT ? M)A' + hi(bT ? In)( , + f, 

By0 =oA, Ei1yN= y, 

where Gi = diag(G(tij),...,G(tik)). A stability result for (4.27) is provided by the 
following 

THEOREM 4.1. For some t > 0, we define h by I = max i <t hi. If h is small enough 
and the condition h +1 < const hi holds for ti > (, then (4.27) has a unique solution y 
which satisfies 

(4.28) I0YIILh[tOtN] < const(II/II + hI + II!IILhto'tN). 

Outline of the Proof. We consider the terms Gjy in (4.27) as perturbations. Then a 
solution of (4.27) can be written as 

yi = Yj + EH,,i(A, h)Gy, 
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where Yj is a solution of the unperturbed problem and G is an appropriately defined 
matrix containing the Gi with i > I. Using (4.24), we obtain 

|| EHI i (A, h )Gy Lh [tFatN <' constl Gy h^t,,t'] 

N-1 

< const| |LO tOtN E 1hit, ti 
i=I 

const|9 |Loot t ]It t- dt < const t 1 v |Lh [ttltNl 

N-i h.h 

< 2 11 Y |LOO htI tN] 

if we choose t = to big enough. The final result is now obtained as in Markowich 
and Ringhofer [8] or de Hoog and Weiss [5] by applying the standard theory for 
collocation methods on the interval [to, tj] and a contraction mapping argument on 
[t1, tN]. E 

5. Convergence. In this section we consider nonlinear problems of the form 

XT = f (t, XT) O<t< () 

(5.1) b(XT(O)) = 0, 

EY1X(T(e)) = 0, 
with T(e) defined by (2.2). 

We apply a k-stage collocation method to (5.1), where w (t) = (t - u1) ... (t - Uk) 

satisfies the following assumptions 

sPw(s) ds = O, p= O.. ., r - 1, 

(5.2) 0 j sE@(s) ds 0 . 

For an arbitrary set of collocation points 0 < ul < ... < Uk < 1, r = 0 holds. For 
Gauss points, r = k, and for Lobatto points, r = k - 2. 

The main result of this paper is stated in 

THEOREM 5.1. Let the assumptions of Theorem 2.1 be valid. Assume that f is 
(k + r)-times differentiable with respect to both variables, the collocation scheme 
satisfies (5.2), and the mesh is defined by 

= 011(k?+ r) h i =Coel/kr 0 < ti < Y 

(5.3) -h 811(k+r)exp( mi+nflt) y < ti < T(e) 

where 8 > 0 and X.,,t is defined in Section 2. Then, for e small enough, the 
collocation scheme for problem (5.1) has a solution ' which is unique in a neighborhood 
of the solution XT of (5.1), which does not shrink as e -O 0. ' satisfies 

(5.4a) max Yi - xT(ti) I=O(e), 

(5.4b) max y11 Yi- XT(tij) |= O((k+1)/(k+r)) 
1 j k 
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Outline of the Proof. We introduce 

ei= XT(ti) -y, eij = XT(tiJ) y11. 

Linearization of the collocation scheme for the ei, eij and elimination of the e 
yield equations of the form 

ei+1 = y(hify(ti XT(ti))) e + e1* 

From Axelsson [3] or Weiss [9], we obtain 

|i 11 < hk+rjjX Xk+r+ 1) jj[||,+1] 

The exponential decay of x(k+r+l), and our choice of the mesh, imply 

Ilil= O(e), 0 < t i < I 

li O(e exp( -Sti)), t < t1 < T(e). 

The assumptions on the mesh of Theorem 4.1 are satisfied for e small enough, 
because for ti > C, 

hi exp( nu h < cost 

if hi < const. This follows from 

j~j~,.~(~nijfl -~ " IX. ln(1/e)\ 
hN 1(k+r) expt mn T(e)) e /(k r) exp + rn m ) 

The estimates obtained in Section 4 can now be employed to apply a contraction 
mapping argument, implying locally unique solvability of the collocation scheme 
and 

N-1 
max e|eiI < const E hill < const-y+ e he 

i=O,..,N i0 osLy t >'y 

costt ye + e > hlej < conste[y +[ e ]8tdt 

It is a well-known fact that the superconvergence order is only given at meshpoints. 
This explains the weaker result (5.4b) at collocation points. E 

Combining Theorems 2.1 and 5.1 shows that the collocation solution is an 
approximation of the solution y* of the infinite problem (1.1) and 

0max jyNYi- Y*(ti) jj = 0(e) 
holds. As in Markowich and Ringhofer [8], it can be shown that the necessary 
number of steps N(e) satisfies 

N(e) = O(e-1/(k+r)) 
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